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A B S T R A C T

From its beginnings two decades ago with the analysis of chromosomal translocation break-
points, research into the molecular pathogenesis of acute lymphoblastic leukemia (ALL) has
now progressed to the large-scale resequencing of candidate oncogenes and tumor suppres-
sor genes in the genomes of ALL cases blocked at various developmental stages within the
B- and T-cell lineages. In this review, we summarize the findings of these investigations and
highlight how this information is being integrated into multistep mutagenesis cascades
that impact specific signal transduction pathways and synergistically lead to leukemic trans-
formation. Because of these advances, fueled by improved technology for mutational analysis
and the development of small-molecule drugs and monoclonal antibodies, the future is bright
for a new generation of targeted therapies. Best illustrated by the successful introduction of
imatinib mesylate, these new treatments will interfere with disordered molecular pathways
specific for the leukemic cells, and thus should exhibit much less toxicity and fewer long-term

adverse effects than currently available therapeutic modalities.
J Clin Oncol 23:6306-6315. © 2005 by American Society of Clinical Oncology

Great strides have been made in the under-
standing of the molecular pathophysiology
of acute lymphoblastic leukemia (ALL).
The cloning and characterization of recur-
rent chromosomal translocations has al-
lowed the identification of genes critical
for the leukemogenic process." Further-
more the presence of particular translo-
cations often has prognostic importance
and can be used to stratify patients into
those who require more-intensive therapy.
The use of gene expression analysis to char-
acterize the differences in gene expression
between leukemias with different chromo-
somal aberrations has solidified the notion
that specific chromosomal abnormalities
specify unique leukemias.”* More recently,
mutations in specific signaling molecules
have been identified in B-precursor and
T-precursor ALL that might be targeted
with small molecule inhibitors.”” These
developments have generated much excite-
ment about the possibility for development

of therapies that are designed based on
the specific genetic aberrations present in
individual leukemias. This review will out-
line some of the more recent findings de-
lineating the molecular genetics of ALLs.
Although the review is divided into adult,
childhood, and infant ALL, data are accu-
mulating in which similar molecular de-
fects share similar pathophysiology across
the different age groups.® Molecular patho-
physiology will be described in the age
group in which the genetic abnormalities
are the most common.

B-Precursor ALL

B-precursor ALL is the most common
form of acute leukemia in children and thus
represents the most common malignancy
of childhood. As a group, children diag-
nosed with B-precursor ALL have a good
prognosis. Recent treatment protocols from
groups in Europe and the United States
demonstrate an event-free survival of
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approximately 80% for children between the ages of 1
and 18 years.””'? While this represents a remarkable im-
provement over the dismal cure rates only 30 years ago,
most believe that further improvement will require the
development of new therapeutic approaches—approaches
that will likely come from a better understanding of the
molecular pathophysiology of leukemia. Furthermore,
long-term adverse effects remain a troublesome prob-
lem for the increasing numbers of survivors of child-
hood leukemia."

Recurrent chromosomal abnormalities are a hall-
mark of lymphoblastic leukemias and provide insight
into the molecular mechanisms of leukemogenesis. The
most common translocation found in childhood B-precursor
ALL is the t(12;21)(p13;q22). Although standard kar-
yotypic analysis does not identify most TEL-AMLI
translocations, molecular techniques demonstrate the
presence of this translocation in approximately 25% of
childhood ALL (Fig 1). Microarray-based gene expression
studies have shown that TEL-AMLI-rearranged ALLs
represent a unique biologic subset of B-precursor ALL.?
Elegant epidemiologic data demonstrating the presence
of the TEL-AMLI translocation in neonatal blood spots
shows that the translocation is present in blood cells at

birth, up to 5 to 10 years before the development of
leukemia.'* These data provide convincing evidence that
the TEL-AMLI translocation is the initiating event in
this leukemia.

The TEL-AMLI1 fusion protein generated by the
t(12;21) contains the basic helix-loop-helix domain of
TEL, fused to the DNA-binding and transactivation
domains of AMLI1. Both the TEL and AMLI genes are
found in other leukemia-associated translocations. TEL
was originally cloned as a fusion partner of the platelet-
derived growth factor receptor B gene (PDGFRf3) encoded
by the t(5;12) in chronic myelomonocytic leukemia'” and
is found in other translocations associated with genes
such as MNI, ABL, and EVII in AML, and with JAK2
in T-ALL.'"® AML1 is the DNA-binding component of
the AML1/CBFp transcription factor complex, the most
frequent target of myeloid-associated translocations,
including the t(8;21), t(3;21), and inv(16)."” The promi-
nent role of AML1 (also known as RUNX1) in the path-
ogenesis of human leukemias is reinforced by the
identification of inherited or acquired mutations in
AMLLI in acute myelogenous leukemias (AMLs)'3; and
the presence of genomic amplifications of the AMLI locus
in childhood ALL."
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Fig 1. Chromosomal abnormalities in acute lymphoblastic leukemia. The relative frequencies of chromosomal aberrations found in lymphoblastic leukemias are
shown for (A) adult and (B) childhood (right) acute lymphoblastic leukemias. The groups are divided into early B-cell lineage and early T-cell lineage.
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Although the mechanisms of leukemogenesis induced
by TEL-AMLI remains obscure, recent data have demon-
strated the importance of both TEL and AMLI for normal
hematopoiesis, thus suggesting that the presence of the
TEL-AMLI fusion protein leads to disordered hematopoi-
etic development as a critical component. Tel-deficient
mice die at approximately day 11 of embryogenesis as-
sociated with defective yolk sac angiogenesis, thus estab-
lishing Tel as an important regulator of development.*
Recently, studies in mice using conditional inactivation
of Tel alleles have shown that Tel is required for definitive
hematopoies.is.zl’22 In addition, the observation that loss
of the normal TEL allele frequently accompanies TEL-
AMLL fusion in ALL cases suggests that the leukemogenic
effects of TEL-AMLI1 could be mediated, at least in part,
through loss of function of the normal TEL protein.”> >
The absence of definitive hematopoiesis in mice lacking
either AML1 or CBFp further supports an essential role
for the AML1-CBFB complex in normal hematopoi-
esis.'”?*?” These results also suggest that a lack of ex-
pression of genes normally activated by AML1 may be
important in leukemogenesis.

TEL-AMLI expression is associated with an excellent
prognosis, with event-free survival rates approaching
90%.>**°? In addition, the favorable prognostic impact
of TEL-AMLI is independent of age and leukocyte count
and was consistently favorable among patients treated on
several different protocols.’™”* Thus, TEL-AMLI expres-
sion identifies a large subset of B-precursor ALL patients
who may be candidates for less-intensive therapy.

Another common chromosomal aberration found in
B-precursor ALL is the presence of more than 46 chromo-
somes (hyperdiploid ALL). As with TEL-AMLI-rearranged
ALL, gene expression studies demonstrated that hyperdip-
loid ALL represents a separate genetically defined subset
of B-precursor ALL®. But, the lack of a recurrent abnor-
mality in specific genes identifiable by karyotypic analysis
has prevented the identification of initiating events in this
leukemia. Potential insight into the mechanism of leuke-
mogenesis in hyperdiploid ALL came recently when acti-
vating mutations in the receptor tyrosine kinase FLT3
were identifled in approximately 20% of hyperdiploid
ALL.** This finding is intriguing not only in that it points
to activated tyrosine kinases as potential oncogenes in
hyperdiploid ALL, but also in that it suggests that small-
molecule tyrosine kinase inhibitors might be of benefit
to patients with this leukemia. Given that patients with
hyperdiploid ALL have an extremely good prognosis
with event-free survival rates near 90%, it will be a chal-
lenge to determine how to incorporate such therapeutics
into treatment regimens.

The t(1;19)(q23;p13) encoding the E2A-PBX fusion
protein is present in about 6% of all B-precursor ALLs
and in 25% of cases with a preB (cytoplasmic immuno-
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globulin-positive) immunophenotype.®*>® The t(1;19)
(q23;p13) fuses the transactivation domain of the bHLH
transcription factor E2A on chromosome 19, to the ho-
meobox (HOX) gene PBXI on chromosome 1.7 E2A
contains a bHLH domain responsible for sequence-
specific DNA binding and dimerization, and plays a critical
role in lymphocyte development.*”*" Given that E2A-
deficient mice show significant defects in lymphoid de-
velopment and the t(1;19) impairs one copy of the E2A
locus, loss of E2A function may contribute to leukemogen-
esis in this subtype of ALL. Furthermore, given the clear
role of HOX genes in leukemogenesis, and the ability
of PBX1 to alter HOX gene dependent regulatory pro-
grams, dysregulation of PBX1 function likely contributes
to leukemogenesis.**

T-Precursor ALL

bHLH, HOX, and other developmental genes. Tran-
scription factor genes are the preferred targets of chro-
mosomal translocations in the acute T-cell leukemias.
Notable examples include the bHLH genes MYC,**™*
TALI(SCL),**™*® and LYL1," which are essential for the
development of other lineages such as erythroid cells
(TALI), but with the exception of MYC, they are not nor-
mally expressed in T-lymphoid cells. When rearranged
near enhancers within the TCRB-chain locus on chromo-
some 7, band q34, or the a/6-chain locus on chromosome
14, band ql11, these regulatory genes become active, and
their protein products bind inappropriately to the pro-
moter or enhancer elements of downstream target genes.

A useful model of aberrant transcription factor ex-
pression in T-ALL is provided by TALI activation due
to the t(1;14) or to an intragenic deletion upstream of
the gene, changes that characterize as many as one fourth
of all cases of childhood T-ALL.”® Because the TALI pro-
tein forms a pentameric DNA-binding complex with E2A,
LMO2, GATAI and LDBI,”" its ectopic expression in
T cells might be expected to activate specific sets of target
genes that are normally quiescent in T-cell progenitors. Al-
ternatively, TAL1 might be leukemogenic via a dominant-
negative effect, since overexpression of TALI can lead to
a functional inactivation of E2A homodimers or E2A-
HEB heterodimers, presumably by sequestering E2A in
the aforementioned pentameric complex. This model is
supported by the observations that E2A-deficient mice de-
velop T-ALL,”>>* and that mice expressing the E2A inhib-
itor Id in the thymus also develop T-ALL.”* Moreover,
mice that express TAL1 mutant proteins able to heterodi-
merize with E2A, but unable to bind DNA, develop a form
of T-ALL that is indistinguishable from that produced
by the full-length SCL protein.”>’

In addition to genes encoding bHLH proteins, addi-
tional classes of regulatory genes are rearranged near TCR
loci, including those encoding the proteins LMOI1
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(formerly known as RBTN1 or TTGI) and LMO2
(formerly known as RBTN2 or TTG2) within the
cysteine-rich LIM family.”®*® Although present in high
concentrations in the central nervous system,’ these pro-
teins are only minimally expressed or absent altogether in
T cells and their progenitors. Both LMO1 and LMO2 pos-
sess zinc-finger—like structures in their LIM domains but
lack the DNA-binding domains common to other tran-
scription factors in this family, suggesting that the LIM
domain functions in protein-protein rather than protein-
DNA interactions. Conceivably, it could even mediate
the action of other transcription factors, as indicated by
the ability of LMO?2 to bind to the bHLH protein TAL1
in vitro.®"** Moreover, LMO1 induces thymic lymphomas
in transgenic mice whose thymocytes bear the LMOI gene
under the control of a proximal Lck promoter.®® In this
context, inappropriate expression of a LIM family protein
appears to have selectively transformed a rare subset of
CD8", CD4~, CD3" thymocytes. The t(11;14)(p15;q11)
and t(11;14)(p13;ql1) are thought to affect similar T-cell
developmental pathways by inducing ectopic expression
of either LMOI or LMO2.

In a recent gene therapy trial in infants with X-linked
severe combined immune deficiency due to underpro-
duction of the common gamma subunit of the interleukin
(IL) -2 receptor, two children whose immune systems had
been reconstituted successfully using a retroviral vector
carrying a cDNA for the common vy chain gene have de-
veloped T-ALL. Strikingly, the malignant cells from both
of these patients showed that the retroviral particle had in-
tegrated near the LMO2 gene, leading to its overexpression
in the malignant lymphoblasts.®**® This observation indi-
cates that LMO2 can be activated iatrogenically by the
nearby insertion of a highly active retroviral promoter,
as well as by chromosomal translocation.

HOXI11, HOX11L2, and also major HOX genes com-
plete the list of developmental genes that are inappropri-
ately placed under the control of TCR loci. Located on
chromosome 10, band q24,%”7° HOX11 encodes a homeo-
domain transcription factor that can bind DNA and trans-
activate specific target genes.”' It is most closely related to
Hix, a murine homeobox gene expressed in specific hema-
topoietic cell lineages and during mouse embryogenesis,”
and it is distantly related to the antennapedia homeobox
genes of Drosophila, which regulate segment-specific
gene expression along the anteroposterior axis of the fly
embryo.”” A specific role of HOX11 in mammalian devel-
opment was demonstrated by homozygous disruption of
this gene, which blocked the formation of the spleen in
otherwise normal mice.”* In the mouse, Hox11 is normally
expressed in specific regions of the branchial arches and
ectoderm of the pharyngeal pouches of the developing
hindbrain, as well as from a single site corresponding to
the splanchnic mesoderm beginning on embryonic day
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11.5.7* Because the nervous system develops normally in
these mice, the roles of Hoxll proteins in branchial
arch and hindbrain structures appear to be compensated
for by other transcription factors expressed by the cells;
however, the role of Hoxl11 in cellular organization at
the site of splenic development is absolutely essential for
the genesis of this organ. Lymphoid and other types of he-
matopoietic cells, normally lacking expression of Hox11
proteins, were not affected by loss-of-function mutations
in this gene, except for the presence of asplenia-related
Howell-Jolly bodies in circulating erythrocytes. Activation
of HOXI1 expression by chromosomal translocations,
either the t(10;14)(q24;q11) or the t(7;10)(q35;q24), in
developing T cells must therefore interfere with normal
regulatory cascades to promote malignant transformation.
Interestingly, HOX11 expression by T-ALL blasts is asso-
ciated with a favorable prognosis in children treated with
modern intensive therapy, possibly because these leuke-
mias have a gene expression signature reflecting an arrest
at the early cortical thymocyte stage with downregulation
of anti-apoptotic proteins such as BCL2 and BCLX;.*

In addition, the HOXI11L2 gene, located at chro-
mosome 5 band 35, has been found to be activated by
translocation near the BCLIIB locus as a result of the
t(5;14)(q35;q932), or by fusion to the TCRS locus as a result
of the t(5;14)(q35;q11). Although neither of these translo-
cations is commonly recognized with use of conventional
cytogenetic techniques, almost 20% of childhood T-ALL
patients demonstrated a HOX11L2 gene translocation by
fluorescence in situ hybridization.”” Although some studies
have suggested that T-ALL patients whose lymphoblasts
overexpress HOX11L2 have a poor prognosis, this finding
appears to be eliminated in children who receive more-
intensive therapy.”®

More recently, a new recurrent translocation has
been recognized that targets and dysregulates expression
from the whole HOXA cluster.”” Thus, this transloca-
tion mimics the global HOXA gene dysregulation charac-
teristic of T-ALLs with MLL gene fusions, as discussed in
the next section. Gene expression analysis demonstrates
that this subgroup shares aspects of the gene expres-
sion signature characteristic of HOX11- and HOX11L2-
overexpressing T-ALLS.

Fusion genes in T-ALL. ~ Although most chromosomal
translocations in T-ALL patients lead to inappropriate ac-
tivation of structurally intact cellular proto-oncogenes
such as MYC, TALI, HOXI11 or LMO2, some can produce
fusion genes. MLL-ENL fusion results from the transloca-
tion t(11;19)(q23;p13), and is associated with acute myeloid
leukemia, B-cell precursor ALL, and T-ALL. Strikingly, in
one series, all 11 T-ALL patients with the MLL-ENL fusion
became long-term survivors, suggesting that this rearrange-
ment is associated with a good prognosis.”® Gene expression
array analysis showed that these cases overexpress major
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HOX genes such as HOXA9 as well as MEISI, resembling
the expression signature identified in B-lineage leukemias
with MLL fusion genes.”” The CALM-AFI0 fusion gene
was initially identified in the U937 cell line, which was
established from a patient with histiocytic lymphoma and
shown to differentiate along the macrophage lineage in
vitro.*® Subsequently, CALM-AF10 was found in patients
with a wide spectrum of hematologic malignancies, but
most commonly in patients with T-ALL.*'"** CALM-AF10
fusions were identified in 12 (9%) of 131 consecutive pa-
tients with T-ALL. Of note, all of the patients with CALM-
AFI10 fusions had either immature T-cell lymphoblasts
that expressed no TCR genes or y/d-positive lymphoblasts.
None of the patients with CALM-AF10 fusions expressed
TCRa/B, suggesting that such fusions are restricted to
the TCRy/S lineage.®

NOTCHI1 gene mutations in T-ALL. Very rare cases
of T-ALL harbor chromosomal translocations that pro-
duce a truncated and activated form of NOTCHI, a
gene that normally encodes a transmembrane receptor,
as shown in Figure 2, that is involved in the regulation
of normal T-cell development and may other tissues dur-
ing embryologic development.*® The NOTCH-1 protein is
generated as a pro-protein that is synthesized and then
cleaved into a heterodimer by a furin-like protease. This
heterodimer migrates to the cell membrane where signals
from its ligands, which consist of Delta-Serrate-Lag2 fam-
ily proteins, lead to further cleavages, including a final step
catalyzed by the enzyme gamma-secretase. This final step
generates an intracellular NOTCH protein, which translo-
cates to the nucleus and forms a complex with the CSL
protein and Mastermind cofactors to initiate transcrip-
tion.*”*® NOTCH-1 had previously been shown to be

Nicastrin
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Fig 2. Activation of notch signaling via extracellular and intracellular
proteolytic cleavage and nuclear translocation of the intracellular NOTCH
domain (ICN). Interaction with delta serrate ligand (DSL) stimulates NOTCH
extracellular cleavage by metalloproteases and intracellular cleavage by
gamma-secretase. After proteolytic cleavage, the ICN moves to the nucleus
where it interacts with Mastermind-like proteins (MAM1) and the CSL (CBF1
in humans, Su[H] in Drosophila, and Lag-1 in Caenorhabditis elegans) DNA-
binding component to regulate gene expression.
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truncated and activated by a rare t(7;9) in T-cell ALL
and the same activated fragment was shown to induce
T-cell ALL in mouse models.”””* To uncover more fre-
quent types of NOTCH]1-activating mutations, we’ tested
several T-cell leukemia cell lines with a drug known to
inhibit gamma-secretase and found evidence of cell-cycle
arrest that was subsequently proven to be NOTCH-1
specific. We were able to identify specific mutations in
sequences encoding both the heterodimerization and
PEST domains of NOTCHI1 in these cell lines, and subse-
quently in over 50% of primary patient T-cell ALL sam-
ples, including samples from all of the molecular subtypes
of T-cell leukemia (Fig 3).

Leukemias bearing translocations involving chromosome
11g23 are found in leukemic blasts from > 70% of leuke-
mias in patients younger than 1 year of age whether the
immunophenotype is designated AML or ALL.”> Some
infant leukemias express antigens characteristic of both
lymphoblasts and monoblasts, and are sometimes desig-
nated acute biphenotyic leukemias. Infants diagnosed
with ALL harboring an 11q23 rearrangement have a par-
ticularly poor prognosis as compared to other children
with ALL.°* The association of 1123 rearrangements
with either ALL or AML is unique in that most other
translocations tend to be associated with leukemias of
a particular hematopoietic lineage. These observations
prompted the name mixed-lineage leukemia (MLL) for
the gene on 11q23.

The MLL-AF4 gene generated by the t(4;11)(q21;q23)
was cloned in the early 1990s. MLL-AF4 encodes a protein
of 2304 amino acids, with the NH,-terminal 1439 amino
acids derived from MLL on chromosome 11, and COOH-
terminal 865 amino acids from the AF4 gene on chro-
mosome 4.°°°® Subsequently, more than 40 different
translocations have been identified, all of which produce
a fusion protein possessing the NH,-terminus of MLL
fused to COOH-terminus of the fusion partner.” Al-
though MLL translocations can be found in either ALL
or AML, particular translocations are associated with
hematopoietic lineage with the t(4;11) found most often
in ALL and the t(9;11)(p21;q23) AML. But this specificity
is not absolute in that the t(9;11) is also frequently iden-
tified in blasts designated as ALL. The association of
particular translocations with a specific immunopheno-
type suggests that the fusion partner plays a role, but the
molecular details of this association are unclear.

The MLL gene encodes a 3969 amino acid DNA-
binding protein that possesses multiple protein motifs
including an NH,-terminal DNA binding domain, tran-
scriptional activation and repression domains, and a
COOH-terminal SET domain that contains histone meth-
yltransferase activity.'’>'°" Of interest, the MLL protein is
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Fig 3. Frequency of NOTCH1 mutations and the role of multistep molecular pathways in the pathogenesis of T-ALL. (A) NOTCH1 mis-sense mutations were
identified within the heterodimerization domain (HD) in 27% of childhood T-ALL blasts, truncating mutations that deleted the PEST destruction box (DPEST) were
identified in 15%, and both regions were simultaneously mutated in the same NOTCH1 gene in 16% of cases, providing evidence for multi-hit mutagenesis
affecting a single oncogene in primary T-ALL samples at diagnosis. Only 42% of cases had unmutated NOTCH1 genes. (B) These mutations were shown to occur
in each of the at least five multistep molecular pathways that can lead to the transformation of T-cell progenitors during development, suggesting that some form
of NOTCH pathway disruption may be required as a first step regardless of the additional genes that ultimately become mutated. HOX71%, HOX11L2* and TALT"
cases show high levels of MYC expression and share the loss of the tumor suppressor genes p16/INK4A and p14/ARF on chromosome 9p. HOX11" and
HOX11L2" often have a novel NUP214-ABL episomal fusion gene, which may render these T-ALLs sensitive to imatinib. LYL1" cases show high levels of
expression of N-MYC and frequently have deletions affecting as yet unidentified loci on chromosomal arms 5q and 13q. Finally, MLL-ENL" cases have low levels
of expression of MYC and other genes involved in cell growth and proliferation. This subset of T-ALL cases express high levels of HOXA9, HOXA10, and HOXCS,

in concert with the HOX gene regulator MEIS1, which is different from other T-ALL cases.

cleaved into two subunits by a recently identified novel
protease.'"*'%* Analysis of MIl knockout mice suggests
that MIl plays an important role in development and
hematopoiesis through maintenance of appropriate ho-
meotic (Hox) gene expression.'”'*® The ability of Mil
to regulate Hox gene expression suggests that its role in
both hematopoiesis and leukemogenesis may be medi-
ated by altering patterns of Hox gene expression. Multiple
studies have demonstrated the ability of Hox genes to
induce leukemia in mice,'"” and the t(7;11)(p15;p15)
translocation found in some human acute myeloid leu-
kemias results in a fusion of the HOXA9 gene to the nu-
cleoporin NUP98."'*'!! Given the apparent importance of
HOX genes in leukemogenesis, it seems likely that trans-
locations involving MLL, a known regulator of HOX
genes, alters expression of HOX genes that are critical
for leukemogenesis.

We recently found the receptor tyrosine kinase FLT3
to be highly expressed in MLL-rearranged ALL as com-
pared with other acute leukemias.” This prompted further
assessment of FLT3 in this disease, in which we found ap-
proximately 20% of MLL-rearranged ALL samples to pos-
sess activating mutations in the activation loop region.’
These data support the idea that leukemogenic fusion pro-
teins such as MLL fusions cooperate with activated kinases
to promote leukemogenesis (Fig 4).''? Furthermore, FLT3
inhibitors appear to have activity against MLL-rearranged
and hyperdiploid ALL, in vitro and in murine models.>!?
Clinical trials to assess the efficacy of FLT3 inhibitors in
MLL-rearranged ALL are in development.

www.jco.org

ADULT ALL

B-Precursor ALL

Unlike adult B-precursor ALL, in which t(9;22) is
identified in approximately 33% of cases, this transloca-
tion encoding the BCR-ABL fusion protein is found in
only 5% of childhood cases (Fig 1).**''"* This difference
in frequency partially accounts for the difference in out-
come between adults diagnosed with B-precursor ALL
as compared with children diagnosed with B-ALL because
both children and adults with BCR-ABL rearranged

_ Activated Signaling
) Molecules (FLT3, others)

Program of
SENE L ENE]

Cytoplasm

Survival or
Proliferation

Fig 4. Multi step pathogenesis of MLL-rearranged lymphoblastic leukemias.
MLL translocations induce self-renewal in hematopoietic progenitors as
a first step in leukemogenesis. The presence of FLT3 mutations in MLL-
rearranged ALLs support activation of FLT3 or other kinases as cooperating
events in this disease. Clinical trials designed to assess the efficacy of FLT3
inhibitors in MLL-rearranged ALL are being developed.
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B-ALL have a poor prognosis.''*"'® Due to this poor
prognosis with standard ALL-directed chemotherapy,
bone marrow transplantation is often recommended for
patients in first remission.''” This is one of the few situa-
tions where bone marrow transplant is clearly beneficial
for children with ALL in first remission.

T-Precursor ALL

As noted in the T-Precursor ALL subsection in Child-
hood ALL, the activation of oncogenic transcription factors
defines distinct molecular subsets of T-ALL with prog-
nostic significance in children. We studied cryopreserved
lymphoblasts collected at diagnosis from 52 adults with
T-ALL to determine whether overexpression of these onco-
genes is of comparable importance in the pathogenesis and
treatment responses of adults with T-ALL. We found that
the molecular pathways leading to adult T-ALL were very
similar to those identified in childhood T-ALL, except that
HOX11 was expressed by 33% of adult T-ALL cases, com-
pared with only 3% of T-ALLs arising in children (Fig 1). In
addition, HOX11L2 overexpression was under-represented
in adult T-ALL compared with childhood cases (5% v 20%
of cases; Fig 1). As in children, adults T-ALLs with aberrant
expression of HOX11 had a significantly better leukemia-
specific survival rate than did those without this feature.''®
Thus, we propose that patients with HOX11" T-ALL could
be treated effectively with regimens of intensive chemother-
apy and spared from the toxicity associated with very inten-
sive therapy followed by rescue with autologous or
allogeneic stem cell transplantation.

Small-Molecule Inhibitors of Tyrosine
Kinase Receptors

Tyrosine kinases are recognized as valid therapeutic tar-
gets in multiple types of cancer including leukemia, and inhi-
bition of constitutively active kinases has clear therapeutic
benefit.''”"'** Kinase inhibition is highly successful in the
treatment of chronic myelogenous leukemia (CML), in which
imatinib mesylate, a small-molecule inhibitor of the BCR-
ABL kinase, is remarkably effective.'” Imatinib induces
complete hematologic remission in approximately 95% of
patients, and complete cytogenetic responses in approxi-
mately 75% of patients with chronic phase CML.'** Imatinib
also hassignificant activity in patients with BCR-ABL—positive
ALL, in which remission is frequently achieved with imatinib
alone.'** Unfortunately these responses are transient, with
most patients experiencing a relapse of their disease within
months. The transient nature of the responses has prompted
anumber of clinical trials in adults and children in which im-
atinib will be incorporated into multi-agent chemotherapy for
patients with BCR-ABL—positive ALL.'*> These early trials
combining imatinib and chemotherapy are of significant in-
terest; it is likely that other kinase inhibitors currently in de-
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velopment for both leukemias and other cancers also will need
to be combined with either chemotherapy or other targeted
therapy because resistance to single-kinase inhibitors is be-
coming an expected outcome.'*® Because multiple inhibitors
are in clinical development, the imatinib trials will provide the
groundwork for future combinations.

Small-Molecule Inhibitors of the NOTCH Pathway

As noted in the T-Precursor ALL subsection in Child-
hood ALL, we recently identified mutations involving the
extracellular NOTCH1 heterodimerization domain or
C-terminal PEST domain in the majority of human
T-ALLs, including leukemias from all of the previously de-
fined molecular oncogenic subtypes. The mutations cause
increased NOTCHI1 signaling, and T-ALL cell lines bearing
such mutations are growth arrested by NOTCH pathway
inhibitors. These findings greatly expand the role of acti-
vated NOTCHI1 in the molecular pathogenesis of human
T-ALL, and provide a strong rationale in for targeted ther-
apies of this disease that interfere with NOTCH signaling
because mutationally activated forms of NOTCHI1 are still
dependent on enzymatic cleavage for activity (Fig 2). On
the basis of these findings, a novel clinical trial of a potent
NOTCH pathway inhibitor has been opened recently at
the Dana-Farber Cancer Institute to target specifically
the NOTCH pathway in children and adults with relapsed
or refractory T-ALL or T-lymphoblastic lymphoma.

Molecular studies of recurrent genetic abnormalities found
in ALL blasts have provided tremendous insights into
molecular pathogenesis. The discovery and ongoing char-
acterization of fusion oncogenes encoded by chromosomal
translocations provides a foundation upon which the study
ofleukemogenesis continues to build. Recent studies assess-
ing gene expression profiles of lymphoblastic leukemias
have demonstrated convincingly the dividing of cases into
biologic subsets, and in some cases identified potential
therapeutic targets that are under investigation. Finally, the
identification of aberrant signaling pathways represents
a fertile ground of future study, given the proven success
of small molecule tyrosine kinase inhibitors like imatinib
mesylate for the treatment of leukemia. The incorporation
of such targeted agents into ALL treatment represents a ma-
jor focus for clinicians and scientists involved in the study of
ALL, and the addition of such therapies should improve the
therapeutic index for ALL therapy.

L
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