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REVIEW ARTICLE

Biology and Treatment of Childhood T-Lineage Acute Lymphoblastic Leukemia

By Fatih M. Uckun, Martha G. Sensel, Lei Sun, Peter G. Steinherz, Michael E. Trigg, Nyla A. Heerema,

Harland N. Sather, Gregory H. Reaman, and Paul S. Gaynon

ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) is the
most prevalent type of cancer, as well as the most

common form of leukemia in children.1 This lymphoid malig-
nancy, manifested by the proliferation of lymphopoietic blast
cells, represents a heterogeneous group of diseases that vary
with respect to morphological, cytogenetic, and immunologic
features of the transformed cells. Technical improvements in
immunofluorescence staining and flow cytometry together with
the availability of numerous monoclonal antibodies (MoAbs)
that recognize lineage-associated membrane molecules have
illuminated the immunophenotypic heterogeneity in ALL. We
now know that leukemia cells from patients with ALL may
express various combinations of surface antigens that are found
normally on lymphocyte precursors at discrete stages of matura-
tion.2,3 Thus, the malignant clones in patients with ALL are
thought to originate from normal lymphoid progenitor cells
arrested at early stages of B- or T-lymphocyte ontogeny.
Although cells from the majority (<85%) of pediatric patients
express B-lineage–associated antigens, those from approxi-
mately 15% of patients express the T-lineage–associated anti-
gens CD1, CD2, CD3, CD4, CD5, CD7, or CD8.4-6 T-lineage
ALL in children is associated with numerous unfavorable
presenting features, thus it is not surprising that children with
T-lineage ALL frequently have been reported to have a worse
prognosis than children with B-lineage ALL.4,5,7-10However, a
number of encouraging reports from recent clinical studies
using contemporary risk-adjusted multiagent chemotherapy
programs have documented remarkably improved outcomes for
patients with T-lineage ALL.6,10-14Moreover, advanced preclini-
cal studies have triggered much optimism that new agent
discovery programs may lead to further improvements in
outcome in the near future. In this review, we discuss
current concepts regarding the etiology, biological char-
acteristics, clinical features, and treatment of pediatric T-lineage
ALL.

ETIOLOGY

The role of numerous epidemiological factors, including
maternal and paternal exposure to radiation, history of maternal
fetal loss or fertility problems, higher birthweight at diagnosis,
and use of exogenous growth hormone, remains controversial in
the cause of pediatric ALL.15-17A recent comprehensive review
found no relationship between exposure to electromagnetic field
(EMF) radiation and incidence of childhood ALL.18 The
reported space-time clustering of ALL cases, which might
suggest an etiologic agent such as a virus, is also controversi-
al.19-23Human T-cell leukemia virus-I and II may be associated
with adult, but not pediatric T-lineage leukemia or lym-
phoma,24,25and Epstein-Barr virus infection has been linked to a
limited number of cases of T-cell lymphoma, but not T-lineage
ALL, in children.26

The autosomal recessive disorder ataxia telangiectasia (AT)
appears to be a true etiologic factor because patients with AT
have an increased risk of developing lymphoid malignancies,

including T-lineage ALL.27 Translocations involving the T-cell
receptor (TCR) loci are reported in approximately 10% of the T
cells from patients with AT,28 but interestingly, the most
frequent of these translocations appear to involve different
regions within the TCR loci compared with those observed in
patients with T-lineage ALL without AT.29-31 The molecular
basis for these effects as well as other genetic abnormalities that
may play a role in T-lineage leukemia will be discussed below.
Taken together, these data suggest that multiple factors may be
involved in the origin of T-lineage ALL.

BIOLOGICAL FEATURES OF T-LINEAGE ALL

Because leukemic cells are thought to originate from normal
T-lymphocyte precursors arrested at early stages of ontog-
eny,2,32 every pathway that ensures homeostasis of a functional
immune system is a potential target for disruption. Still, the
fundamental issue of how many different mutations are required
for malignant transformation to the leukemic state remains to be
delineated. Nevertheless, clear associations have been identified
between the occurrence of nonrandom translocations or other
gene mutations and the development of T-lineage ALL. Below,
we describe the specific molecular defects found in T-lineage
leukemias and discuss altered signal transduction pathways that
may contribute to the malignancy.

Chromosomal translocations.An array of nonrandom trans-
locations that are specific to T-lineage ALL have been identi-
fied; all appear to occur preferentially in the TCR loci on
chromosomes 14 and 7.33 The breakpoints in many cases
resemble TCR recombination signals, implying that the aberra-
tion arose during TCR rearrangement.34-39Translocations involv-
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ing chromosomes 1 and 14, such as t(1;14)(p33;q11) and
t(1;14)(p32;q11), have been estimated to occur in approxi-
mately 3% of T-lineage ALL cases.40 In such rearrangements,
the SCL/TCL5/TAL-1 gene from chromosome 1 and the TCRd
gene on chromosome 1436,41,42 are juxtaposed, resulting in
deregulation of normal TAL-1 expression.41,43 TAL-1 was
predicted to encode a protein containing a helix-loop-helix
DNA binding motif,42,43 suggesting that the t(1;14) transloca-
tions could contribute to leukemogenesis by inducing aberrant
expression of novel or TAL-1–regulated genes.

A distinct TAL-1 disruption occurs via an interstitial deletion
between a locus called SIL (SCL interrupting locus) and the
58UTR of SCL, resulting in a fusion transcript SIL/SCL, and is
estimated to occur with a frequency of 16% to 26% in T-lineage
ALL. 44-46 Presence of a TAL-1 disruption was correlated with
high white blood cell (WBC) count, high hemoglobin level, and
CD21/CD102 immunophenotypes, and interestingly, 4-year
event-free survival (EFS) was higher for patients with TAL-1
disruption compared to those without TAL-1 alterations
(59%6 11% v 44%6 7%, respectively), although this differ-
ence did not reach conventional significance.46Although TAL-1
is required for development of all hematopoietic lineages in
mice,47 the gene is not expressed in B- or T-lineage cells,41,48

and interestingly, SCL-transfected, v-ABL–transformed cells
appear to be oncogenic in mice.49 Taken together, these data
suggest that disruption of normal TAL-1 expression may
contribute to the transformation of T-cell precursors into
leukemic blasts.

The t(10;14)(q24;q11) translocation, first identified in T-cell
neoplasms including T-lineage ALL, involves the TCRa/TCRd
locus on chromosome 1434,35,50and the TCL3 locus on chromo-
some 10.34,35 An open reading frame within TCL3 encodes a
novel homeobox protein, HOX-11, whose expression is deregu-
lated as a result of the translocation.51-53Moreover, like TAL-1,
HOX-11 is capable of DNA binding and transcriptional activa-
tion of reporter genes, suggesting a role for this gene in
leukemic transformation.54 Additional studies showed that
whereas HOX-11 was expressed in leukemic cell lines and
leukemic blasts, it was not expressed in normal T lympho-
cytes,52,53,55but was required for normal spleen development.56

Reverse transcriptase-polymerase chain reaction (RT-PCR) as-
says have suggested that HOX-11 alterations may occur with
high frequency in patients with T-lineage ALL.57 Thus, deregu-
lation of HOX-11 is likely to be a biologically significant factor
in development of T-lineage ALL.

Translocations t(11;14)(p13;q11) and t(11;14)(p15;q11) also
are observed frequently in T-lineage ALL58-60; both involve
breakpoints within diversity or J segments the region the TCRa
or TCRd genes on chromosome 14.37,61,62 McGuire et al61

described multiple open reading frames near the chromosome
11 breakpoints and identified one at 11p15 as the open reading
frame of the TTG-1 gene. Similarly, Boehm et al63 identified the
involved region of 11p15 as the rhombotin gene. Both genes
encode proteins characterized by duplicate cysteine-rich zinc-
finger protein binding homology domains.61,63 A related gene,
rhombotin-2/TTG-2, was shown to be deregulated in cases
involving 11p13.63,64 Consistent with the predicted structure of
the rhombotins, a recent report described the identification of an
ets family transcription factor, ELF-2, that contains rhom-

botin-2 binding domains, suggesting a transcriptional regula-
tory role for rhombotin-2.65 Clinically, several investigators
have associated t(11;14) translocations with an immature stage
of thymocyte development,37,59,60 but the overall prognostic
significance of this translocation remains unclear.

Although translocations involving chromosome 7 occur in
both B-precursor and T-lineage ALL, those involving the
TCR-b locus at 7q32-36 are specific for T-lineage ALL.66 One
such translocation, t(7;19), truncates the lyl-1 gene on chromo-
some 19,67 presumably resulting in altered DNA-binding ability
for lyl-1.68 Another case, t(7;9), results in truncation of the
TAN-1 gene on chromosome 9.69 The mouse homologue of
TAN-1 is expressed ubiquitously, but is most abundant in
lymphoid tissues, suggesting that normal expression of TAN-1
is disrupted in t(7;9)1 ALL. 69

The distinct translocation t(1;7)(p34;q34) was shown to
juxtapose the TCR-b constant region enhancer upstream of the
LCK gene, which encodes an SRC family protein tyrosine
kinase that is involved in signal transduction through CD4.70,71

Notably, overexpression of LCK in transgenic mice causes
thymomas or both thymomas and peripheral lymphoid malignan-
cies,72,73 suggesting a role for deregulated LCK expression in
leukemogenesis. The c-myc locus on chromosome 8 defines yet
another class of translocations associated with T-lineage ALL.
In t(8;14)(q24;q11), c-myc is translocated with the TCRa loci
on chromosome 14, resulting in deregulation of myc expres-
sion.74,75 In t(2;8), a fusion protein is produced that consists of
c-myc and the product of an unidentified locus on chromosome
2.76 The frequency and significance of these translocations are
unclear at present.

We have recently determined the frequency and clinical
significance of chromosomal abnormalities in a large cohort of
patients with T-lineage ALL enrolled on contemporary CCG
studies (Heerema N., et al, submitted for publication). Translo-
cations involving 14q11 and 7q32-q36 were among the most
frequent abnormalities, but non-TCR loci, including 9p, 6q,
11q23, and 14q32, also were frequently altered. Notably, none
of these abnormalities had prognostic significance in the context
of the intensive therapies used in contemporary CCG studies.
Nevertheless, the array of chromosomal rearrangements de-
scribed above are a hallmark of the biological diversity of
T-lineage ALL and are likely to result from alterations in
underlying cellular control mechanisms. Indeed, recent ad-
vances in our understanding of cell signaling and cell cycle
control suggest that defective cell surveillance mechanisms are
likely to be the major factors leading both to unrestrained
proliferation of leukemic cells and to the development of
chromosomal abnormalities, including translocations, pseudo-
diploidy, and hyperdiploidy, that are associated with leukemic
cells.77-80Alterations in such control mechanisms are discussed
below.

Mutation or loss of cell cycle control genes.Mutations
present in malignant cells allow them to circumnavigate regula-
tors that control proliferation and differentiation. The retinoblas-
toma (Rb) gene was originally identified as a tumor suppressor
gene because of its inactivation in cases of retinoblastoma;
prostate, breast, and lung cancers; and leukemias.81 Notably, the
telomeric Rb1 gene is located on the long arm of chromosome
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13 (13q14), which is inactivated or deleted in approximately 6%
of T-lineage ALL cases.82,83

In addition to Rb, other proteins that affect cell cycle
progression include the cyclin-dependent kinase inhibitors p21,
p27, and p57, as well as the inhibitors of Cdk4 (Ink4): p15Ink4b,
p16Ink4a, p18Ink4c, and p19Ink4d.84-89 Among the Ink4 family of
inhibitors, p15Ink4b and p16Ink4a have been implicated for a role
in the biology of T-lineage ALL.90-95Both genes map to 9p21, a
region on the short arm of chromosome 9 previously shown to
be deleted frequently in T-lineage ALL.33,96-98 In addition,
Batova et al95 recently reported that the 58 promoter region of
the p15 gene is preferentially hypermethylated, presumably
resulting in loss of transcriptional expression in 38% of newly
diagnosed T-lineage ALL.

Another critical regulator of cell cycle progression, the p53
gene, is the most frequently mutated gene in human cancers.81

The major function of p53 is to ensure that cells arrest and
attempt to repair genotoxic damage before replicating DNA and
entering mitosis.99 In p53-deficient mice, the most common
tumor that arises is a T-lineage lymphoid malignancy.100 Al-
though p53 mutations are infrequently observed at diagnosis,
they are associated with relapse in pediatric T-lineage ALL.101,102

Another sensor for cell damage appears to be the ATM gene
product, which is mutated in patients with AT.103 After insult
with agents that induce sublethal DNA damage, cells from
patients with AT fail to block DNA synthesis and thereby fail to
repair the damaged DNA.104These effects are apparently caused
by a failure of the mutated ATM gene to regulate p53.105

ATM-deficient mice develop an aggressive form of T-lineage
leukemia/lymphoma,106,107 and, as described above, children
with AT frequently develop T-lineage ALL,27,108,109implicating
ATM in leukemogenesis.

Other genes implicated in the malignant transformation of
leukemic cells are Ets-1 and IKAROS. The Ets-1 T-lymphocyte
transcription factor is thought to be important for normal thymic
development and for prevention of cell death in normal mature
T cells. A mutation in the DNA binding domain of the Ets-1 was
reported in a case of T-lineage ALL,110 but the clinical
significance of this finding remains to be proven. The IKAROS
gene encodes a zinc finger DNA binding protein that is required
for lymphoid cell differentiation.111 Heterozygous transgenic
mice harboring a defective IKAROS gene develop a very
aggressive form of T-cell leukemia, suggesting that IKAROS
may serve as a suppressor of leukemic transformation.112

Leukemic cells also appear to be altered in their responses to
various stimuli that induce apoptosis. Debatin et al113,114 re-
ported that primary leukemic cells and cell lines from adult
patients with T-cell leukemia were sensitive to FasL-induced
cell killing in vitro, whereas leukemic cells from pediatric
patients with T-lineage ALL were resistant. Resistance was
unrelated to the quantity of Fas on the cell surface, but was
reversed by treatment with the protein synthesis inhibitor
cycloheximide, suggesting that short-lived proteins were re-
quired for maintenance of the resistant phenotype. In vivo
treatment of a human T-lineage ALL-engrafted severe com-
bined immunodeficiency (SCID) mouse with an anti-Fas anti-
body resulted in prolonged survival, but did not eradicate the
disease, supporting the existence of Fas sensitive and insensi-
tive leukemic cells.115 These data suggest that altered responses

to apoptotic stimuli or regulatory factors may contribute to the
ability of leukemic cells to escape killing by either immune
surveillance or cytotoxic agents.

Bcl-2, which protects cells from non–Fas-mediated apopto-
sis,116,117 is expressed in both T-lineage and B-lineage leuke-
mias, but it is not yet known how this affects their ability to
survive cytotoxic treatments. A related protein, Bax,118 acts as
an antagonist to Bcl-2 and may confer radiation sensitivity to
cells.119 In a recent CCG study, we found a marked variation in
Bcl-2 expression by primary leukemic cells from 238 children
with newly diagnosed ALL, including 52 patients with T-
lineage ALL.120 High-risk features, such as high WBC count,
organomegaly, presence of MLL-AF4 or BCR-ABL fusion
transcripts, or leukemic cell growth in SCID mice, were not
associated with Bcl-2 expression in these patients. For patients
with T-lineage ALL, high Bcl-2 expression was predictive of
slow early response (ie, M3 day 14 marrow status). However,
with limited follow-up and overall excellent outcome for
patients, this correlation did not extend to EFS.

CLINICAL FEATURES AND TREATMENT

OF T-LINEAGE ALL

T-lineage ALL is distinct from B-lineage ALL not only
biologically, but also clinically. Although the basis for these
differences is not well understood, clinical characteristics have
been useful prognostic factors for guiding the use of experimen-
tal treatments. Below, we describe common presenting features,
prognostic variables, and treatment outcome of patients with
T-lineage ALL based on data accumulated over the last decade.
We then focus on causes for treatment failure and discuss new
strategies for improving outcome among subgroups of patients
who remain at risk for relapse despite intensive therapy.

Presenting features.The relationship between T-lineage
markers and unfavorable presenting characteristics was first
noted by Borella, Sen, and others,121-124and numerous studies
have now confirmed that compared to patients with B-lineage
ALL, those with T-lineage ALL more frequently show the
highest WBC range ($50,000/µL), are nonwhite, older, exhibit
marked enlargement of the spleen, liver, and lymph nodes, and
have a mediastinal mass.5,7,9,10,125

Modal chromosome number is often abnormal among pa-
tients with ALL, with hyperdiploidy (.50 chromosomes)
correlated with favorable outcome and pseudodiploidy associ-
ated with poor outcome.58,98,126-129The hyperdiploid karyotype
is more often associated with pre-B or early pre-B immunophe-
notypes,129 whereas the pseudodiploid karyotype is more often
associated with the T-lineage immunophenotype.33 Also, ‘‘near
tetraploid’’ chromosome number (.65) is more often associ-
ated with T-lineage ALL and poor outcome.130 As described
above, nonrandom translocations in T-lineage ALL preferen-
tially occur in the TCR loci on chromosomes 7 and 14,33 and
those involving the TCRblocus at 7q32-36 and the TCRad
14q11 collectively occur in approximately 20% of all T-lineage
ALL cases.33

Risk classification of T-lineage ALL.In general, treatment
protocols for childhood leukemias have relied on the known
prognostic factors of age and WBC count, as well as organomeg-
aly rather than immunophenotype for risk assessment. As a
result, even though many patients with T-lineage ALL were
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previously misclassified or not immunophenotyped, they were
likely to receive treatment for high-risk ALL based on their
other presenting features. In contemporary trials, various groups
have used somewhat different criteria for classification, which
has complicated comparisons of results between groups, but
nevertheless has generally resulted in similar assignment of
patients with T-lineage ALL to more intensive treatment proto-
cols, such as Berlin-Frankfurt-Munster (BFM),131,132modified
BFM,12 and the New York (NY) regimen,13 as well as those of
the St Jude Children’s Research Hospital133 and Dana Farber
Cancer Institute.11

From 1983 through 1993, children daignosed with ALL who
exhibited National Cancer Institute (NCI) standard risk fea-
tures134 were classified by the CCG as either low risk (ages 2
through 9 years and WBC,10,000/µL) or intermediate risk
(ages 2 through 9 years and WBC,10,000 to 49,999/µL, or age
1 year and WBC,50,000/µL), whereas patients exhibiting NCI
poor-risk characteristics were classified as follows: high risk,
ages 1 through 9 years with WBC$50,000/µL or age.10
years; infants, age,1 year; lymphomatous, patients with
specific high-risk features, as described.135As shown in Table 1,
patients with T-lineage ALL more frequently were assigned to
the higher risk than to the lower risk protocols, which is
consistent with their clinical features described above.

Treatment outcome in T-lineage ALL.As noted above,
previous studies showed poorer outcomes for patients with
T-lineage ALL compared with patients with B-lineage ALL. For
example, in the BFM group, Henze et al136 reported poor
outcome for patients with T-lineage ALL who were treated on
DAL (adapted from St Jude protocol VII), with 9-year probabili-
ties of continuous complete remission (CCR) of 9%6 9% and
41% 6 5%, for T-lineage and non–T-lineage, respectively. In
contrast, patients treated on BFM achieved CCR of 52%6 13%
and 65%6 5%, respectively, suggesting that BFM provided
superior treatment for T-lineage ALL.

Investigators of the Pediatric Oncology Group7 treated 53
patients with T-lineage ALL with a modified LSA2L2 regimen
that had been shown to be efficacious for treatment of T-cell
non-Hodgkin’s lymphoma.

Although complete remission was achieved for 88% of the
patients, the projected overall 3-year EFS was only 40%

(SE5 8.3%). Moreover, for patients with WBC count,50,000,
the projected 3-year EFS was 67%, whereas for patients with
WBC count.50,000, 3-year EFS was only 19%. In a follow-up
study, 253 children with T-lineage ALL treated by a modified
LSA2L2 regimen together with cranial radiation therapy and
triple intrathecal therapy for presymptomatic treatment of
central nervous system (CNS) disease achieved an overall
4-year EFS of 43% (SE5 4%).8 Thus, although outcomes
improved, the LSA2L2 regimen remained ineffective for the
majority of patients with T-lineage ALL. Similarly, in an
analysis of data from St Jude studies X and XI, conducted from
1979 to 1983, 120 children with T-lineage ALL had a 5-year
EFS of 46% (SE5 18%).137 In a French trial, Garand et al10

treated 88 pediatric patients with T-lineage ALL by protocols
such as BFM or FRALLE,138and an EFS of approximately 58%
was reported for a median follow-up of 30 months, suggesting
that such therapy could improve outcome for these patients.

Although the studies described above generally found unfa-
vorable outcomes for patients with T-lineage ALL, other recent
studies have reported improved outcomes through the use of
highly intensive treatment protocols. For example, using an
intensive four-drug induction and multidrug continuation, includ-
ing doxorubicin and prednisone together with prophylaxis for
CNS disease and high-dose L-asparaginase, Clavell et al11

reported improved outcome (4-year EFS of 71%) for high-risk
patients, including those who had T-lineage ALL. More re-
cently, in a study by Schorin et al14 20 patients with T-lineage
ALL treated with multiagent chemotherapy together with
cranial irradiation and intrathecal methotrexate for 2 years also
had favorable outcomes (7-year EFS of 70%, SE5 10%).14The
favorable outcome was attributed to the inclusion of L-
asparaginase and doxorubicin in the treatment regimen.

Studies by the CCG also have shown improvements in EFS
outcome for high-risk patients with ALL including those with
the T-lineage immunophenotype. Steinherz et al13 used an
intensive multidrug chemotherapy (NY regimen) to treat 100
patients with characteristics previously correlated with a high
risk for relapse. This patient population included 13 patients
with T-lineage ALL (defined as E-rosette–1). Four-year EFS
for the entire cohort was 69% (SE5 5%), whereas 4-year EFS
for patients with T-lineage ALL was 75%. Gaynon et al139 used
a modified BFM therapy involving four-drug induction and
aggressive continuation therapy to treat high-risk children,
including 60 who were E-rosette–1. Overall 3-year EFS was
65% (SD5 3.5%); patients with WBC count.50,000 who
were E-rosette–1had a 3-year EFS of 75% (SD5 6.9%),
whereas those who were E-rosette–2 had an EFS of 51%
(SD 5 6.3%).

To investigate the outcome of patients with T-lineage ALL on
these regimens more thoroughly, we recently analyzed data
from the large cohort of patients enrolled on CCG studies
conducted between 1983 and 1993.134 Notably, we observed a
significant improvement in outcome of patients with T-lineage
ALL compared with those on earlier studies because of marked
decreases in the incidences of induction failures, early bone
marrow relapses, and CNS relapses when more aggressive
therapy was given (Fig 1). The probability of 3-year survival for
patients with T-lineage ALL increased from 56% in studies
conducted between 1978 and 1983, to 65% in studies conducted

Table 1. CCG and NCI Risk Group Classification of Children

With B-Lineage and T-Lineage Acute Lymphoblastic Leukemia

Risk Group

B-Lineage ALL N 5 3,668 T-Lineage ALL N 5 730

N (%)* N (%)†

CCG-Low 705 (19.2) 58 (8.0)

CCG-Intermediate 1,575 (42.9) 71 (9.7)

CCG-High 1,059 (28.9) 169 (23.2)

CCG-Lymphomatous 216 (5.9) 425 (58.2)

CCG-Infant 113 (3.1) 7 (1.0)

Total 3,668 (100.0) 730 (100.0)

NCI-Standard 2,213 (60.3) 211 (28.9)

NCI-Poor 1,455 (39.7) 519 (71.1)

Total 3,668 (100.0) 730 (100.0)

*Percentage of patients with B-lineage ALL classified into each risk

group.

†Percentage of patients with T-lineage ALL classified into each risk

group.
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between 1983 and 1989, and to 78.8% in studies conducted
between 1989 and 1993 (Table 2). Taken together, these various
studies suggest that current risk for patients with T-lineage ALL
treated by intensive therapeutic regimens is similar to that of
patients with B-lineage ALL. Thus, a major improvement in
treatment of T-lineage ALL has been achieved.

Prognostic factors in T-lineage ALL.A number of risk
factors for T-lineage ALL were identified in the studies de-
scribed above. For example, Dowell et al9 and Shuster et al8

reported that compared with patients with T-lineage ALL whose
leukemic cells were CD102, those whose cells were CD101

were more likely to achieve remission and have significantly
improved EFS outcomes. In another study, Pui et al137 reported
that CD3 positivity in association with an abnormal karyotype
was a significant adverse risk factor; 5-year EFS for patients
with both of these characteristics was 35%. In contrast, Shuster
et al8 found no prognostic significance for CD3 expression;
rather, the most important favorable prognostic factors for
patients with low WBC count or high WBC count at diagnosis
were CD5 positivity or expression of the THY antigen, respec-
tively.

The findings that many patients with T-lineage ALL now can
achieve a much improved outcome has motivated attempts to
identify subgroups of patients within T-lineage ALL that may
exhibit improved or reduced probabilities of survival. Two

previous CCG studies described above noted a favorable
association between outcome and E-rosette (CD2) positivity
among high-risk patients.13,139 To determine comprehensively
the clinical significance of CD2 expression in T-lineage ALL,
we prospectively immunophenotyped leukemic cells from the
large cohort of children enrolled on CCG studies between 1983
and 1993.140 We noted a statistically significant correlation
(P 5 .0006) between the CD2 antigen expression frequency (ie,
the average percentage of blasts that were positive for CD2) and
EFS. Compared with patients with the highest CD2 expression
level, patients with intermediate and low CD2 expression
frequencies had relative hazard rates (RHR) of 1.27 and 2.01,
indicating an increased risk of treatment failure. After 6 years of
follow-up, the EFS estimates for the three CD2 expression
groups (low expression frequency to high expression fre-
quency) were 49.3%, 63.5%, and 72.2%, respectively. CD2
expression remained a significant predictor of EFS after adjust-
ment for the effects of other covariates by multivariate regres-
sion. Expression of other antigens (CD3, CD5, CD10, or CD34)
by leukemic cells was not correlated with EFS. Thus, the
expression frequency of CD2 antigen is a powerful predictor of
EFS that may be useful for risk classification or assignment to
novel therapies aimed at improving patient outcome.

Maturation stage of the predominant leukemic clones also
has been suggested as a means for subgrouping patients with
T-lineage ALL. Crist et al4 stratified 101 patients with T-lineage
ALL into three maturation groups according to expression of
T-lineage cell surface antigens, as follows: stage I, CD21CD71;
stage II, CD21CD71CD11CD41CD81; and stage III,
CD21CD71CD12(CD41 or CD81)CD31.Although the percent-
age of patients achieving remission following induction therapy
was lower for patients with T-lineage ALL of the earliest
maturation stage (79%, 100%, and 94% for stages I, II, and III,
respectively), 4-year EFS was equally poor for all three groups
(33%, 32%, and 38%, respectively).

Recently, we analyzed data from a large cohort of patients
with T-lineage ALL treated on contemporary protocols of
the CCG to further investigate the prognostic role of the
apparent maturation stage of leukemic T-cell precursors.141

Patients were immunophenotypically classified as follows:
pro-thymocyte leukemia (pro-TL), CD71CD22CD52; imma-
ture TL, CD71(CD21 or CD51)CD32; and mature TL,
CD71CD21CD51CD31. No group had a preponderance of
favorable or unfavorable presenting characteristics. Four-year
EFS was lower for patients with pro-TL (57.1%; SD5 8.4%)
compared with patients with immature and mature TL (68.5%,
SD 5 3.5%; and 77.1%, SD5 4.0%; respectively) with an
overall significance ofP 5 .05. Highly significant differences
were found for overall survival (P 5 .005) as a result of the
deaths of all patients with pro-TL who relapsed. Although CD2
also was a significant prognostic factor (P 5 .03), RHRs of
2.11, 1.51, and 1.17 for patients with pro-TL, CD22 immature
TL, and CD21 immature TL, respectively, suggested that the
pro-TL maturation stage had added prognostic significance (Fig
2). Indeed, multivariate analysis indicated that the influence of
ontogeny group was greater than that of CD2. Thus, leukemic
cells of the pro-TL maturation stage identified a subgroup of
patients with T-lineage ALL who have a significantly worse

Fig 1. Improved EFS of patients with T-lineage ALL in the context

of contemporary intensive chemotherapy programs. EFS for the

entire cohort of patients with T-lineage and B-lineage ALL treated on

the 1800 series and 100 series of CCG studies are shown. EFS values

at designated points in follow-up are given in the text.

Table 2. Outcome for Patients With T-Lineage ALL Treated During

Three Consecutive CCG Treatment Eras

CCG Study Era Years

Event-Free Survival (%)

3-Year 5-Year

CCG-160s 1978-1983 56.4 52.5

CCG-100s 1983-1989 65.8 61.0

CCG-1800s 1989-1993 78.2 75.2
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EFS outcome than patients whose leukemic cells correspond to
a more mature stage of development.

The variant immunophenotype in which leukemic cells
coexpress T-lineage– and myeloid–associated antigens repre-
sents a controversial prognostic factor. Although numerous
investigators have reported that coexpression of myeloid anti-
gens predicted an adverse risk for patients with T-lineage
ALL, 142,143 others have found similar outcomes for myeloid
antigen negative (My2) and myeloid antigen positive (My1)
T-lineage ALL.144,145 We recently evaluated the influence of
myeloid antigen expression on treatment outcome in a large
cohort of children with newly diagnosed ALL enrolled on
risk-adjusted CCG studies.146Patients were classified as My2 or
My1 T-lineage, according to expression of CD7, CD13, and
CD33. Patients with My1 T-lineage ALL were more likely than
patients with My2 T-lineage ALL to show favorable presenting
features, but induction outcome and EFS outcome were similar
for patients with My1 and My2 T-lineage ALL, with 4-year EFS
of 72.7% (SD5 7.1%) and 70.1% (SD5 5.7%), respectively
(P 5 .49; Fig 3). These results show that regardless of treatment
intensity, mixed myeloid-lymphoid phenotype was not an
adverse prognostic factor for childhood T-lineage ALL.

IMPEDIMENTS TO EFFECTIVE TREATMENT

Drug resistance. Despite improvements in overall survival,
relapse in the bone marrow, CNS, and other sites remains a
significant problem for high-risk patients. Pieters et al147

showed that patients with T-lineage ALL were particularly
resistant to prednisone (PRED), daunorubicin, cytarabine, ma-
fosfamide, and L-asparaginase, but wide ranges of resistance
levels were observed within each immunophenotypic group.

For all patients, the probability of continuous complete remis-
sion decreased with increasing resistance to PRED. In a later
study, these investigators reported that patients with T-lineage
ALL were more resistant to a host of drugs including those
mentioned above as well as teniposide, ifosfamide, vincristine,
vindesine, and dexamethasone.148 Lauer et al149 found that a
regimen of intensive rotating drug pairs was effective for
prevention of drug resistance in high-risk patients with B-
lineage, but not T-lineage ALL, again suggesting that immuno-
phenotype plays a role in drug sensitivity. Others have attrib-
uted methotrexate (MTX) resistance in patients with T-lineage
ALL to a decreased formation of MTX-polyglutamates, which
is a determinant of toxicity.150,151Resistance to glucocorticoids
is thought to be caused by low glucocorticoid receptor (GR)
levels. However, the relationship between GR and outcome
within the T-lineage immunophenotype is unclear. Quddus et
al152 reported that leukemic cell GR level did not predict
outcome within the T-lineage group, whereas Costlow et al153

reported that lower GR levels were correlated with unfavorable
presenting features including T-lineage. Finally, although multi-
drug resistance is thought to be mediated by overexpression of
P-glycoprotein, the product of the multidrug resistance gene
MDR-1,154 the specific significance of this phenomenon in
T-lineage ALL has not been determined.

INNOVATIVE TREATMENT STRATEGIES

FOR T-LINEAGE ALL

Current strategies for improving treatment of children with
ALL have been aimed at maximizing efficacy of treatment
according to risk. Reliable and accurate methods for predicting
prognosis are required to achieve adequate treatment with the
least intensive regimens. Identification of biological and clinical

Fig 2. EFS of patients with T-lineage ALL according to the appar-

ent maturational stage of bone marrow leukemic blasts. EFS for (A)

mature TL, (B) CD21 immature TL, (C) CD22 immature TL, and (D)

pro-TL patients treated on the 1800 series of CCG protocols are

shown. EFS values at designated points in follow-up are given in the

text.

Fig 3. Myeloid antigen expression in T-lineage ALL is not associ-

ated with poor EFS. EFS for My1 TL and MY2 TL patients treated on

the 1800 series of CCG protocols are shown. EFS values at designated

points in follow-up are given in the text.
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prognostic factors, as discussed above, has aided in stratifying
patients according to risk. However, additional methods are
required for identifying and more effectively treating subgroups
of high-risk patients who are most likely to relapse despite
intensive therapy.

Seventy-five percent of children with T-lineage ALL on CCG
protocols fit within the NCI high-risk category based on
presenting age and WBC count.134 Patients with T-lineage ALL
with standard risk represent less than 4% of patients with ALL
and less than 6% of all standard-risk patients. Treatment of
patients who have relapsed generally has consisted of intensive
chemotherapy to achieve a second remission and subsequent
use of either nonablative chemotherapy or ablative radiochemo-
therapy followed by bone marrow transplantation (BMT), and
recurrence of leukemia is the major obstacle to the success of
either approach. Intensification of cytotoxic therapy using
conventional drugs will likely cause overlapping toxicities and
may result in delays which may erode the intensity of therapy.
Overall, the outcome for patients with relapsed T-lineage ALL is
dismal because only a very small fraction can be saved with
high-dose radiochemotherapy followed by BMT. Consequently,
the development of new potent antileukemia drugs and the
design of combinative treatment protocols using these new
agents have emerged as exceptional focal points for research in
modern therapy of relapsed T-lineage ALL.

Immunotoxins and other targeted biotherapeutics.Immuno-
toxins (MoAb-toxin conjugates) are a new class of immunophar-
macologic agents that shows considerable promise for more
effective treatment of T-lineage ALL. A vast number of MoAbs
have been developed with the intent of specifically targeting
cytotoxic agents to leukemia cells while limiting the deleterious
effects on normal tissues. Immunoconjugates containing toxins
such as pokeweed antiviral protein, ricin, Pseudomonas endo-
toxin, and diphtheria toxin directed against T-lineage–specific
surface antigens have been developed for use as systemic
therapy of T-lineage ALL.155-158

Murphy et al159 as well as Kreitman et al160 have pioneered
the use of genetic engineering to redirect the lethal action of
diphtheria toxin towards effective targeting of growth factor
receptors on leukemic cells. In one example, researchers have
developed a recombinant fusion toxin, DAB486IL-2, in which
the native receptor binding domain of diphtheria toxin has been
replaced with interleukin-2.161

Deoxyguanosine analogs.Another new and promising treat-
ment program for T-lineage ALL is based on the potent
antileukemia activity of deoxyguanosine analogs. The accumu-
lation and the resulting toxicity of dGTP in T lymphocytes was
first described in patients with a genetic deficiency for the
enzyme purine nucleoside phophorylase (PNP).162,163This obser-
vation lead to the search for means by which cytotoxic levels of
dGTP could be achieved in T-lineage leukemias. An analog of
deoxyguanosine, Ara-G (9-b-D-arabinofuranosylguanine) accu-
mulates in T cells and acts as a poor substrate for endogenous
PNP, but is efficiently phosphorylated by deoxycytidine ki-
nase164,165; in vitro studies have shown that Ara-G is selectively
cytotoxic for T-cell lines and T-lineage leukemic cells.166,167

Recently, a water soluble pro-drug derivative of Ara-G,
known as compound 506U/C-506 (2-amino-6-methoxypurine
arabinoside), was developed for in vivo therapeutic applica-

tions.168 Preliminary results of a Phase I trial of C-506 in adult
T-cell malignancies suggested that daily infusion of C-506
could achieve and maintain cytotoxic levels of Ara-GTP.169

These data indicate that C-506 warrants investigation as a new
therapeutic drug for treatment of pediatric T-lineage ALL.

CONCLUSIONS

The adverse risk previously associated with T-lineage ALL in
children has progressively been surmounted by intensive chemo-
therapeutic regimens. Still, approximately 20% to 25% of
children with T-lineage ALL continue to fail therapy. Further
augmentation of the currently used intensive chemotherapeutic
regimens may not be warranted because of the likelihood of
significant adverse effects. Thus, the current challenge is to
apply our expanding knowledge of biological regulation in
leukemic cells to the development of novel biologic therapeu-
tics, particularly those that specifically target leukemic cells.
Such agents could theoretically be used either to trigger cell
killing directly or to alter the leukemic cell’s response to
radiation or chemotherapeutics. Finally, the identification of
prognostically distinct patient subgroups may lead to tailored
and risk-adjusted therapies for children with T-lineage ALL.
Use of these various strategies, singly and in combination,
should allow further improvements in outcome for patients with
ALL who remain at risk for treatment failure.
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